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Abstract. We present a detailed analysis of the nearest-neighbour spacing-distribution (NNSD) 
for random matrices on which the non-zero elements are confined to a band around the diagonal. 
The vanishing of the remaining elements induces non-analytic (logarithmic) behaviour for the 
NNSD at very smal l  spacings. A conjecture for the precise behaviour of these logarithmic terms 
is presented and supported by extensive numerical wmputatinns. 

1. Introduction 

Random matrices are frequently introduced in the modelling of quantum systems, in 
particular whenever one is not interested in the precise spectrum but only in its statistical' 
properties [1,2]. Introduced initially in the context of nuclear physics [3], random matrices, 
as a statistical auxiliaq, have found applications in the domain of atomic and molecular 
physics [4], in the description of spin systems [ 5 ] ,  solid state physics 161 etc. A more 
recent extension of their applicability concerns the domain known as 'quantum chaos' [7], 
i.e. the particular properties of quantum systems the classical counterparts of which behave 
chaotically. Random matrices have met considerable success in all these domains and while 
it is clear that the matrix elements of physical Hamiltonians are not precisely random [8] 
the spectral statistics do not deviate substantially from random-matrix predictions. 

Quantum chaos is a domain where the use of random matrices has been particularly 
successful [9]. The main argument here is that the quantal spectral statistics of classically 
ergodic Hamiltonians present a universal behaviour, i.e. they do not depend on the fine 
details of the system. Thus one can make predictions based on the known results of the 
theory of random matrices and, in fact, the predictions turn out to be quite accurate. The 
current literature abounds in examples materializing (for quantum sysG") the various 
classes of level repulsion predicted by Dyson's theory [IO]. This universality of the 
behaviour of ergodic systems is enhanced by the universality of random-matrix level 
statistics. In fact, as shown in [ll], the statistics of level correlations do not depend 
on the particular ensemble used provided the probability distribution of the matrix elements 
is smooth. However, when one abandons ergodicity this nice universality disappears. The 
intermediate region where chaos is of limited extent (in the phase space) while integrability 
is not yet restored has been the object of numerous studies [12-141 but the question is far 
from being settled at this point. 

Band matrices have recently been the focus of interest because they are well adapted 
to the description of the transition region from integrability to ergodicity [12,15]. From 
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a more physical point of view sparse matrices are often encountered in the description of 
spin systems with finite connectivity [16] or tight-binding models on a disordered lattice 
[17]. The interest of band random matrices lies in the fact that they mimic the semiclassical 
structure of the Hamiltonian operator [ 181. Several recent works have examined the statistics 
of diagonal banded matrices which has led to the discovery of a scaling law. In [19] and 
[20], banded N x N matrices were considered, in which the non-zero elements are confined 
in a band of width k around the diagonal. As both works have shown, the only relevant 
parameter that describes the system when N + CO is the ratio k Z / N .  The two limits of 
k2/N + 0 and k 2 / N  + 00 lead to the well-known Poisson and GOE (Wigner-like) statistics 
for the spectrum. For the intermediate region, the results are not yet conclusive. Still, as far 
as the nearest-neighbour spacing distribution (NNSD) is concerned, the Brody distribution 
[211 

gives a fair representation. One can obtain equally good results with Izrailev's form [22] 

P[(s; q)  = A(TS/Z)Y exp[-&q1r2s2 - ( B  - +qz)sl (1.2) 

which is even more suitable than Brody's for q > 1, having a more realistic exponential 
Part. 

The aim of this paper is to investigate this intermediate region from a slightly different 
viewpoint. Instead of working with large matrices, fixing k 2 / N  and letting N + 00, we 
consider small matrices and study the, appearance in the statistics of deviations from the 
simple GOE predictions when the size and sparseness of the matrix are varied. This approach 
has been the object of very few studies until today. In [231, Molinari and Sokolov have 
studied the~NNsD for 3 x 3 GOE random matrices with the (1,3) element set equal to zero. 
They have shown that the distribution P(s)  of the spacings behaves like slog(l/s) for 
s + 0. We have presented the analysis for 4 x 4 matrices in [24] together with some 
exploratory numerical results. In this paper, we present a detailed numerical investigation 
of the problem which supports our conjecture on the behaviour of the logarithmic terms 
in the spectral statistics. Since we have been able to obtain these high-quality numerical 
results on COE matrices, we have attempted a study of GUE band matrices (in particular, for 
the 3 x 3 case, where the distribution,must behave as s210g(1/s)). As we will see in the 
following sections, despite the s2 factor, the logarithmic term is also well reproduced here. 

2. NNSD for band matrices: conjectures and exact results 

As already stated, the statistical probe we will use for the analysis of the spectrum of 
band random matrices is the distribution of spacings between nearest-neighbour levels. The 
reason for this choice is that the NNSD has been, over the years, the most intensely studied 
spectral statistical indicator, leading to a wealth of results. Moreover, since this statistical 
diagnostic requires only the gross features of the spectrum, it shows a universal behaviour, 
in the sense that it represents with sufficient accuracy the behaviour of systems of various 
origins. The study of other statistical indicators would also be interesting. However, a 
caveat is of order here: when one studies the full details of the spectrum, such as distant- 
level correlations, there is no a priori 'guarantee that the random-matrix results will closely 
represent the physical situation. 
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The random matrices we will consider here belong to the Gaussian ensemble. In the 
major part of the paper we will deal with the orthogonal ensemble (GOE), while in the last 
part some results from the unitary ensemble (CUE) will be presented as well. GOE matrices 
are real symmetric with their elements obtained through independent Gaussian distributions 
characterized by their common variance a' for the diagonal elements, while the variance for 
the off-diagonal elements is 02/2. (CUE matrices are Hermitian instead of real symmetric.) 
The reason for the choice of Gaussian ensembles is essentially a question of tradition. The 
solvability of *e Gaussian models has made them particularly popular over the years and, 
given the remarks of [ 1 I] on the universality of the statistical behaviour (i.e. insensitiveness 
on the precise nature of the ensemble used), they are perfectly~suited to our purpose. The 
NNSD, subject to the constraints 

P(s)ds = 1 .~ L'm sP(s)  d.9 = 1 L'" ~ 

for 2 ~x 2 COE random matrices, can be computed exactly and it is the well-known . Wigner .~~ 
surmise 

The important point here is that the level repulsion is linear at small spacings. This is 
indeed a genericfeature for ,the GOE: the linear repulsion is present for any dimension of the 
random matrix, only the slope varies. In fact even this variation is small since for N 3 '03 

the slope at the origin is $r2 [XI, less than 5% larger than Wigner's slope. 
For 3 x 3 band random matrices, i:e: matrices with a13 = 0, the behaviour of the NNSD 

near the origin was shown to be of the form P,(s) % slog(l/s). For 4 x 4 tridiagonal 
matrices the calculation has'led to a'distribution behaving ai P&) X slo2(l/s). Since for 
4 x 4 matrices there is more freedom as to the choice of the zero matrix elements, we have 
also examined [24] the behaviour of the NNSD when less than three matrix elements are set 
to zero. If aI4 = ax = 0 then the NNSD behaves as s log(l/s) at small spacings. When we 
have only ~a14 = 0 the NNSD has non-analytic behaviour of the form s + asz log( l/s): here 
the singularity manifests itself in the second derivative. 

This is about all that exists concerning exact results. From here on, we will continue 
with the conjectures one can formulate based on these results and the mechanisms of their 
derivation. From the results on matrices of size 2, 3 and 4,we were led, in [24], to surmise 
that for N x N tridiagonal matrices the NNSD at small spacings will be of the form 

' 

The rationale behind this surmise was that for an N x N matrix we transfornythe probability 
measure for matrix A to e-(1/~k')TrA2i7i<jlei -ejllli de, dQ-where ei are the N eigenvalues 
and C2 the i N ( N  - 1) anglesof the orthogonal transformation that diagonalizes it. The fact 
that the matrix is tridiagonal is enforced by introducing in the integration one &function 
S(0rl j )  for each matrix element that vanishes, i.e. $ ( N  - 2 ) ( N  - 1) &functions in all. 
After integration over the &functions we are left with N - 1 angles: N - 2 of them lead, 
upon integration, t o ~ a  power of the logarithm and the remaining one just gives an angular 
average. Thus the dominant behaviour of the NNSD is just (2.2) but subdominant terms 
do exist.  since for N -+ m the NNSD of a tridiagonal matrix should tend to a Poisson 
distributon, the logarithmic terms must resum in such a way as to compensate the s factor. 
This can be obtained naturally if, for s + 0, P(s)/s is not just logN-'(1/s) but the 
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truncation, at order N - 2, of the Taylor series of ek (in terms of x = log(l/s)) and where 
A -+ 1 as N + W. Our analysis of small tridiagonal matrices does not allow us to have a 
more precise estimation of A. Still, some meaning can be assigned to this parameter if we 
consider the resummation of eA'og(l/s) to all orders with A # 1.This results, in the spacing 
distribution, to a prefactor s'-* which,is reminiscent of Brody's or Izrailev's sq factor. As 
we will see in the next section, such an approximation can be quite accurate except for very 
small spacings. In the same spirit, for large but finite N ,  PN(s )  will be close to a Poisson 
distribution, except in a very small region around the origin. 

3. Numerical results 

In [24] we have already presented results based on the diagonalization of a large number 
of random matrices (typically 106-107 levels were obtained there). This study has 
convincingly shown that departures from pure Wigner-like statistics for band random 
matrices exist. However, extracting the logarithmic terms was a much more ambitious 
enterprise necessitating the equivalent of 109-10'0 levels. It was clear that unless every step 
of the computation were to be optimized the time needed might well be prohibitively long. 
The choice of Gaussian-distributed matrix elements is performed using the well known Box- 
Muller algorithm 12.61. For the major part of our calculations we are dealing with tridiagonal 
symmetric matrices. Thus we can use specific diagonalization routines that are efficiently 
optimized. Since the statistical properties we are looking at are translation-invariant one 
can work with traceless random matrices. This means that, provided the variance and 
correlations of the diagonal elements are appropriately taken, one can eliminate one random 
variable. 

One way to improve the statistics is to focus on the region of interest (s -+ 0). This 
is precisely what we have done for small matrices, in particular for the 3 x 3 and 4 x 4 
cases. First we locate (in the parameter space of the a+) the hypersurface representing 
the condition of degeneracy. Discretizing the parameter space we can define a volume 
that contains this hypersurface and around which s is sufficiently small (but not too small 
so as not to introduce an undesirable bias). Having determined elementary (hyper)-cubes 
in this parameter space we choose the matrix elements randomly according to a Gaussian 
distribution. In order to do this we must invert an error function: a very efficient way to 
do this is to discretize the interval [0, 11 with a very fine step and to establish (once and for 
all) an inversion table. For larger matrices the whole procedure of locating the degeneracy 
hypersurface becomes so time-consuming that the direct approach of choosing the random 
matrix elements without a priori constraints becomes competitive (in terms of CPU time). 

We come now to the results we have obtained numerically and we start with the 3 x 3 
case. Figure l(a) presents the global NNSD P(s) as a function of s together with three fits 
corresponding to the Brody and Inailev distributions and also to an ansatz of ours: 

where K is the complete elliptic integral and p is a free parameter to be fixed by ,y2-fit. 
This ansatz is suggested by our results in [ZA] where the elliptic integral appears in the 
derivation of the banded 3 x 3 NNSD and gives rise to logarithmic behaviour. Here this 
ansatz is used as a convenient way to regularize the logarithmic term. As we remark from 
the figure, all three ansatze are in excellent agreement with the numerical results. Next we 
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Figure 1. (a) NNSD for 3 x3 band random OOE rtwlrices 
tosther, with the three empirical fits: Brody, Inailev 
and 3.1 (lowest curve); (b) blow-up ofthe NNSD at small 
spacings together with a straight-line and a logarithmic 
fit; and (c)  extraction of the logarithmic term Eom 

3.0 

2.5 

002 0.04 0.06 QCS KO P(s)/s together with the best-log fit. 

blow up part of figure l (u )  for 0 < s < 0.1. and present, in figure I(b), the histogram for 
P ( s )  together with a linear and logarithmic fit. The deviation from the linear behaviour is 
perfectly clear and this is made even more explicit in figure .l(c), where we plot P(s)/s: 
the histogram reproduces the behaviour of log(l/s) even down to the first bin! 

In the case of 4 x 4 matrices we do not show the global NNSD: it suffices to say that its 
agreement with the Brody and Iuailev distributions is excellent. From our results in [24], 
we expect the behaviour of NNSD for small spacings to be quadratic in the logarithm. In 
order to verify this numerically we have proceeded as follows. First we choose a region 
near the origin (here 0 < s 6 0.1) and fit the numerical results with logarithmic terms 
(in fact, the truncation of the Taylor series of eA'og(l/s)) up to order n with n = 1 , 2 , 3  
(figure 2(a)). Next we blow-up a region closer to the origin, 0 < s 6 0.005, and look 
closer to the results of the (fixed) fit. Clearly, n = 2 gives the best agreement, as expected. 
In figure 2(c) we present P(s) /s  and compare.it with the predicted logarithmic dependence 
which, again, reproduces the numerical data in quite a satisfactory way. 

For the 8 x 8 matrix case we show first the global NNSD (figure 3(a)). We remark that 
both the Brody and Izrailev distributions represent the numerical results fairly accuraply. 
The fit of the logarithmic term has been performed in the same way as for the 4 x 4 case, 
starting from the region 0 < s < 0.02 and going down to 0 < s < 0.0002. We present only 
this final blow-up (figure 3(b)) where the five lower curves correspond to the truncation of 
the Taylor series of eA'og('/s) up to order n with n = 4,5,6,7,8. The agreement of the 
histogram with n = 6 is clear. The topmost curve in 3(b) represents se"Og(l/s) without 
truncation, i.e. SI-*. We remark that even close to the origin this simple power fit is still a 
fair approximation. This is precisely one of the reasons why the Brody or Izrailev ansatz 
works well (see also [U]): except for a very small region around the origin the single 
power ansatz is sufficient and, moreover, it improves with increasing N. One can think of 
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Figure 2. (0) Blow-up Of the NNSD at S m d  spacings 
together with logarithmic fits: expansions up to n = 
1.2.3; (b)  blow-up of the previous at very small 
spacings; and (c) extraction of the logarithmic term 

. from P(s)/s together with the best-log fit (n = 2). 
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Figure 3. (a )  NNSD for 8 x 8 band random GOE muices together with the two empirical fits: 
Brody (upper curve) and Ivailev (lower curve); (b) blow-up of the NNSD at very small spacings 
together with logarithmic fits: expmsions up to r=  4,5,6, I ,  8 and full resummation. 

it as a particular "Tve' regularization of the logarithmic terms that is suitable for global 
fits. As we have explained in the previous section, we do not have any a priori estimate 
of A and its dependence on N .  We can even wonder whether it does indeed tend to 1 as 
N 4 00. In order to examine this we have studied the dependence of the parameter q 
from the Brody and Izrailev expressions in terms of N ,  since we expect h and q to be 
related through q = 1 - h . Fittinga Brody or Izrailev ansatz to the global distribution for 
matrices of various size (up to 32) we have found a relation l/q M 0.430 + 0.28SN that 
fairly approximates the data in the region 2 < N < 32 while having the correct behaviour 
as N = 2 and N + CO. The values of h in the same region are much more difficult to 
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obtain numerically. Contrary to Brody’,s q ,  which can be assessed through a global fit, A 
needs~a detailed study of very small spacings. Moreover the truncated eh’ng(’ls) is not very 
sensitive to the precise value of A over a range of values. Typically, the use of the value 
h = 1 - q leads to the same conclusions concerning the order of the truncation (n = 2 in 
figure 2(b) and n = 6 in figure 3(b)) as the individually optimized A. 

Finally, a much more smngent test of our calculations is presented by the study of CUE 
band random matrices. The analysis that led to a logarithmic dependence in the GOE case 
can be repeated along the same lines here leading to a behaviour of the NNSD at small 
spacings of the form szlog(l/s). Figure 4(a) gives the global histogram together with 
the Wigner-like ansatz (32/nz)s2e-4”/r and a fit using Iuailev’s form: A blow-up of the 
region near the origin (figure 4(b)) clearly shows the deviations from a pure s2 dependence. 
They become~even more explicit when one represents P ( s ) / s 2  as in figure 4(c) where the 
logarithmic term is apparent. 

Figure 4. (0)  NNSD for 3 x ~ 3  band random GuE matrices 
together with a Wignw-like distribution (chain curve) 
and a fit of Iznilev’s distribution (full curve): (b) 
blow-up of the NNSD, at small spacings together with 
a quadratic and a logarithmic fit; and (c) extraction of 
the logarithmic t a n  from P(s ) /s2  together with the 
best-log fit. 

4. Conclusion 

Random matrices have provided a most useful guide in the evaluation of the statistical 
properties of various physical systems and most recently in the domain of quantum chaos. 
Band matrices are of particular interest because they reproduce the structure of the (quantal) 
Hamiltonian operator and, as far as quantum chaos is concerned, they can model the 
mechanism of the transition from ergodicity to integrability [ 12,281. Our results have shown 
that this transition from a Wigner-like to a Poisson NNSD is mediated by logarithmic terms. 
These logarithmic terms, when adequately resummed, may lead to a power sq behaviour of 
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the NNSD at small spacings, akin to the one encountered in Brody’s or Izrailev’s ansatze. 
This explains the success of these two empirical distributions in the description of the 
transition region. Still, one must bear in mind that neither of these distributions is entirely 
satisfactory: Brody’s expression is definitely inadequate for q > 1, while Izrailev’s is 
plagued by a Gaussian fast-decreasing factor that can never (apaa from the pure Poisson 
limit) be made to disappear. 

Several problems remain open in the domain of band random matrices. Our surmise 
(2.2) concerning matrices of size larger than 4 is still a conjecture. Moreover, OUT results 
on 4 x 4 matrices suggest a whole line of research on sparse matrices where the zeros 
do not occupy lines parallel to the diagonal but can occur in any position, perhaps in a 
random distribution. One should thus study the spectral properties of such matrices for 
given distributions of the matrix sparseness [16]. The scaling law discovered in [18] and 
[19] cannot find a simple interpretation in the framework of our approach and a more refined 
analysis is needed in this case. Clearly random matrices are with us to stay. 
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